

PHYSICS Electromagnetism

Test Score:

YEAR 12 Unit 3A Test 2012

L	Name: Lelutions	Set:	Teacher: JAA M V
IN	STRUCTIONS:	u.	
	Time Allowed = 40 minutes		
	Total Marks = 38 marks		
	Answer all questions in the space pro	vided.	
	Rough working is permitted on the qu	uestion paper.	
	Show all relevant working details in o	rder to acquire full m	narks.
	Graphic Calculators are Not permitted	l for this paper.	
	*Do Not write in pencil. (Note: a	1 mark penalty wi	ll be incurred)
	*Do Not borrow materials. (Note	: a 1 mark penalty	will be incurred)
	POST ASSESSMENT REVIEW (to be of SELF-ASSESSMENT: Relative Weaknesses —Objective N		rn of your marked paper) Strengths — Objective No.
	Major Concerns: (be specific)	Action Pla	an: (be specific)

Q1 [4 marks]

On the diagram of the Earth provided:

- 1a) Sketch the shape and direction of the Earth's magnetic field.
- 1b) Label the Geographical North Pole (with a "G")

NOTE: NORTH MAGNETIC POLE & MAGNETIC NORTH POLE

N & M

(4 marks)

Q2 [4 marks]

Perth is known to have a angle of declination of -1.6° and an angle of inclination of 70°.

Carefully discern and explain what these angles measure in relation to the Earth's magnetic field at Perth's geographical location. Simple, clearly labeled diagrams may assist your answer.

I

THE ANGLE OF DECLINATION IS THE ANGLE BETWEEN TRUE NORTH (GEOGRAPHICAL)

AND THE NORTH MAGNETIC POLE. PERTH'S NAVIGATIONAL BEARING IS ADJUSTED BY

1.6° (WEST OF NORTH).

THE ANGLE OF INCLINATION IS THE ANGLE THE EARTH'S MAGNETIC FIELD MAKES
WITH THE HORIZONTAL AT THE EARTH'S SURFACE AT A LOCATION (PERTH HAS A
SIGNIFICANT VERTICAL COMPONENT)

(Amarks)

Q3 [6 marks]

<u>Carefully</u> sketch the **resulting** Magnetic Field associated with the following arrangements:

(2 marks)

Q4 [4 marks]

The diagram below shows a doorbell that has an electromagnet as its main component. Carefully explain (in detail) what causes the rapid repetitive movement that will result in the bell "ringing".

1	WHEN THE PUSH BUTTON IS DEPRESSED, THE CIRCUIT IS COMPLETED.
2.	CURRENT FLOWING IN THE COILS OF THE ELECTROMAGNET PRODUCES A
	STRONG MAGNETIC FIELD/FORCE
3.	THIS MAGNETIC FORCE ATTRACTS THE CLAPPER BASE WHICH MOVES IN RESPONSE
4.	THIS MOMENTARILY BREAKS THE CIRCUIT AT THE CONTACT SCREW
5.	THE INERTIA OF THE CLAPPER KEEPS IT MOVING UNTIL IT HITS THE BELL
6.	THE SPRING PULLS THE CLAPPER BACK TO ITS ORIGINAL POSITION.
٦.	THIS COMPLETES THE CIRCUIT WHICH ACTIVATES THE ELECTROMAGNET AGAIN
8	THE ENTIRE SERIES OF EVENTS IS REPEATED UNTIL THE PUSH BUTTON
	IS RELEASED AND THE CIRCUIT'S IS BROKEN

Q4 [20 marks]

A simplified diagram is provided for a coil abcd, which is free to rotate about an axis within a magnetic field of 155 mT.

The coil consists of 64 turns and a current of 250 mA is passed through it.

The coil is rectangular with ab = 72 mm and bd = 58 mm.

Note: All values must be given to the correct number of significant figures. (1 mark)

4a) Determine the maximum force (magnitude and direction) exerted on side 4b

$$F = 64 \times 155 \times 10^{-3} \times 250 \times 10^{-3} \times 72 \times 10^{-3} \times \sin 90^{\circ}$$

(3marks)

4b) Determine the maximum torque (magnitude and direction) developed by this coil .

=
$$64 \times 155 \times 10^{-3} \times 250 \times 10^{-3} \times (72 \times 10^{-3} \times 58 \times 10^{-3})$$

(3marks)

4c) Determine the maximum flux threading the coil when it rotates.

$$= 155 \times 10^{-3} \times (72 \times 10^{-3} \times 58 \times 10^{-3})$$

$$.'. \phi = 6.5 \times 10^{-4} \text{ Wb} \quad (2SF)$$

(3marks)

5d) Carefully describe what needs to be added in order to make the arrangement a DC motor. Briefly explain why it is required and how it works with reference to the original diagram.

· ADD A SPLIT RING COMMUTATOR

- THE COMMUTATOR ENABLES THE COIL TO CONTINUE TURNING IN A PARTICULAR DIRECTION BY REVERSING THE DIRECTION OF THE CURRENT IN THE COIL EACH HALF TURN. (I=)F=>T)
- ON THE COMMUTATOR AT THE REQUIRED STAGE OF ROTATION.
- · CURRENT DIRECTION DETERMINES THE FORCE DIRECTION AND HENCE TORQUE, (4 marks)
- 5e) Using the modifications described (in part d), sketch a graph the torque on the coil as it rotated through 360° . (assume 0° is when the sides bd, is parallel to the magnetic field)

(3marks)

- 5f) Describe two practical changes that will make the torque produced more consistent.
- · SEVERAL COILS, SET AT DIFFERENT ANGLES / PLANES, EACH CONNECTED TO
 PAIRS OF COMMUTATOR SEGMENTS.
- " CURVED MAGNETIC POLE PIECES PRODUCE A NEAR-RADIAL MAGNETIC FIELD

 WHICH PROVIDE A NEAR PARALLEL INTERACTION BETWEEN THE COIL PLANES

 AND THE MAGNETIC FIELD => EVEN FORCE => EVEN TORQUE.

(3marks)